Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 96: 102290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580173

RESUMO

Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-ß (Aß) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aß1-42, the Aß1-42/Aß1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aß1-42/Aß1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores/líquido cefalorraquidiano
2.
FEBS Open Bio ; 14(4): 643-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429912

RESUMO

The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.


Assuntos
Fator de Crescimento Neural , Neurônios , Masculino , Ratos , Animais , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
3.
Ageing Res Rev ; 89: 101987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343679

RESUMO

Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Metabolômica/métodos , Metaboloma , Biomarcadores/metabolismo
4.
Neural Regen Res ; 18(8): 1679-1683, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751779

RESUMO

We reviewed recent major clinical trials with investigational drugs for the treatment of subjects with neurodegenerative diseases caused by inheritance of gene mutations or associated with genetic risk factors. Specifically, we discussed randomized clinical trials in subjects with Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis bearing pathogenic gene mutations, and glucocerebrosidase-associated Parkinson's disease. Learning potential lessons to improve future therapeutic approaches is the aim of this review. Two long-term, controlled trials on three anti-ß-amyloid monoclonal antibodies (solanezumab, gantenerumab and crenezumab) in subjects carrying Alzheimer's disease-linked mutated genes encoding for amyloid precursor protein or presenilin 1 or presenilin 2 failed to show cognitive or functional benefits. A major trial on tominersen, an antisense oligonucleotide designed to reduce the production of the huntingtin protein in subjects with Huntington's disease, was prematurely interrupted because the drug failed to show higher efficacy than placebo and, at highest doses, led to worsened outcomes. A 28-week trial of tofersen, an antisense oligonucleotide for superoxide dismutase 1 in patients with amyotrophic lateral sclerosis with superoxide dismutase 1 gene mutations failed to show significant beneficial effects but the 1-year open label extension of this study indicated better clinical and functional outcomes in the group with early tofersen therapy. A trial of venglustat, a potent and brain-penetrant glucosylceramide synthase inhibitor, in Parkinson's disease subjects with heterozygous glucocerebrosidase gene mutations revealed worsened clinical and cognitive performance of patients on the enzyme inhibitor compared to placebo. We concluded that clinical trials in neurodegenerative diseases with a genetic basis should test monoclonal antibodies, antisense oligonucleotides or gene editing directed against the mutated enzyme or the mutated substrate without dramatically affecting physiological wild-type variants.

5.
Curr Cancer Drug Targets ; 23(2): 87-102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35975845

RESUMO

Evidence shows that there is a synergistic, bidirectional association between cancer and aging with many shared traits. Age itself is a risk factor for the onset of most cancers, while evidence suggests that cancer and its treatments might accelerate aging by causing genotoxic and cytotoxic insults. Aging has been associated with a series of alterations that can be linked to cancer: i) genomic instability caused by DNA damage or epigenetic alterations coupled with repair errors, which lead to progressive accumulation of mutations; ii) telomere attrition with possible impairment of telomerase, shelterin complex, or the trimeric complex (Cdc13, Stn1 and Ten1 - CST) activities associated with abnormalities in DNA replication and repair; iii) altered proteostasis, especially when leading to an augmented proteasome, chaperon and autophagy-lysosome activity; iv) mitochondrial dysfunction causing oxidative stress; v) cellular senescence; vi) stem cells exhaustion, intercellular altered communication and deregulated nutrient sensing which are associated with microenvironmental modifications which may facilitate the subsequential role of cancer stem cells. Nowadays, anti-growth factor agents and epigenetic therapies seem to assume an increasing role in fighting aging-related diseases, especially cancer. This report aims to discuss the impact of age on cancer growth.


Assuntos
Envelhecimento , Neoplasias , Humanos , Envelhecimento/genética , Senescência Celular , Estresse Oxidativo , Telômero , Neoplasias/genética , Carcinogênese
6.
Cells ; 11(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291113

RESUMO

Among the factors involved in diabetic retinopathy (DR), nerve growth factor (NGF) and vascular endothelial growth factor A (VEGFA) have been shown to affect both neuronal survival and vascular function, suggesting that their crosstalk might influence DR outcomes. To address this question, the administration of eye drops containing NGF (ed-NGF) to adult Sprague Dawley rats receiving streptozotocin (STZ) intraperitoneal injection was used as an experimental paradigm to investigate NGF modulation of VEGFA and its receptor VEGFR2 expression. We show that ed-NGF treatment prevents the histological and vascular alterations in STZ retina, VEGFR2 expression decreased in GCL and INL, and preserved the co-expression of VEGFR2 and NGF-tropomyosin-related kinase A (TrkA) receptor in retinal ganglion cells (RGCs). The WB analysis confirmed the NGF effect on VEGFR2 expression and activation, and showed a recovery of VEGF isoform dysregulation by suppressing STZ-induced VEGFA121 expression. Reduction in inflammatory and pro-apoptotic intracellular signals were also found in STZ+NGF retina. These findings suggest that ed-NGF administration might favor neuroretina protection, and in turn counteract the vascular impairment by regulating VEGFR2 and/or VEGFA isoform expression during the early stages of the disease. The possibility that an increase in the NGF availability might contribute to the switch from the proangiogenic/apoptotic to the neuroprotective action of VEGF is discussed.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Fator de Crescimento Neural , Soluções Oftálmicas , Receptor trkA , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/prevenção & controle , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Isoformas de Proteínas/metabolismo , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Retina/metabolismo , Estreptozocina , Tropomiosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
7.
Pharmacol Res ; 184: 106404, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988869

RESUMO

Numerous clinical trials of anti-amyloid agents for Alzheimer's disease (AD) were so far unsuccessful thereby challenging the validity of the amyloid hypothesis. This lack of progress has encouraged researchers to investigate alternative mechanisms in non-neuronal cells, among which microglia represent nowadays an attractive target. Microglia play a key role in the developing brain and contribute to synaptic remodeling in the mature brain. On the other hand, the intimate relationship between microglia and synapses led to the so-called synaptic stripping hypothesis, a process in which microglia selectively remove synapses from injured neurons. Synaptic stripping, along with the induction of a microglia-mediated chronic neuroinflammatory environment, promote the progressive synaptic degeneration in AD. Therefore, targeting microglia may pave the way for a new disease modifying approach. This review provides an overview of the pathophysiological roles of the microglia cells in AD and describes putative targets for pharmacological intervention. It also provides evidence for microglia-targeted strategies in preclinical AD studies and in early clinical trials.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Encéfalo , Humanos , Neurônios , Sinapses
8.
Cancers (Basel) ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35681602

RESUMO

We investigated the p75 Neurotrophin Receptor (p75NTR) expression and cleavage product p75NTR Intracellular Domain (p75ICD) as potential oncogenic and metastatic markers in human Laryngeal Squamous Cell Carcinoma (LSCC). p75NTR is highly expressed in Cancer Stem Cells (CSCs) of the laryngeal epithelia and it has been proposed as a marker for stemness, cell migration, and chemo-resistance in different squamous carcinomas. To investigate the clinical significance of p75NTR cleavage products in solid tumors, full-length and cleaved p75NTR expression was analyzed in laryngeal primary tumors from different-stage LSCC patients, diagnosed at the Policlinico Umberto I Hospital. Molecular and histological techniques were used to detect the expressions of p75NTR and p75ICD, and ATP Binding Cassette Subfamily G Member 2 (ABCG2), a CSC marker. We found regulated p75NTR cleavage during squamous epithelial tumor progression and tissue invasion. Our preliminary investigation suggests p75ICD expression and localization as possible features of tumorigenesis and metastaticity. Its co-localization with ABCG2 in squamous cells in the parenchyma invaded by the tumor formation allows us to hypothesize p75NTR and p75ICD roles in tumor invasion and CSC spreading in LSCC patients. These data might represent a starting point for a comprehensive analysis of p75NTR cleavage and of its clinical relevance as a potential molecular LSCC signature, possibly helping diagnosis, and improving prognosis and personalized therapy.

10.
Front Pharmacol ; 13: 786475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496270

RESUMO

Novel effective therapeutic strategies are needed to treat brain neurodegenerative diseases and to improve the quality of life of patients affected by Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral sclerosis (ALS) as well as other brain conditions. At present no effective treatment options are available; current therapeutics for neurodegenerative diseases (NDs) improve cognitive symptoms only transiently and in a minor number of patients. Further, most of the amyloid-based phase III clinical trials recently failed in AD, in spite of promising preclinical and phase I-II clinical trials, further pinpointing the need for a better knowledge of the early mechanisms of disease as well as of more effective routes of drug administration. In fact, beyond common pathological events and molecular substrates, each of these diseases preferentially affect defined subpopulations of neurons in specific neuronal circuits (selective neuronal vulnerability), leading to the typical age-related clinical profile. In this perspective, key to successful drug discovery is a robust and reproducible biological validation of potential new molecular targets together with a concomitant set up of protocols/tools for efficient and targeted brain delivery to a specific area of interest. Here we propose and discuss Focused UltraSound aided drug administration as a specific and novel technical approach to achieve optimal concentration of the drug at the target area of interest. We will focus on drug delivery to the brain through the nasal route coupled to FUS as a promising approach to achieve neuroprotection and rescue of cognitive decline in several NDs.

11.
Front Mol Biosci ; 8: 699613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760921

RESUMO

Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer's disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid ß fragments. Indeed, FXS patients show an increase of amyloid ß load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson's Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.

12.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576177

RESUMO

Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.


Assuntos
Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Microscopia Confocal , Fator de Crescimento Neural/genética , Fatores de Crescimento Neural/genética , Ratos , Proteínas Recombinantes/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
13.
Adv Exp Med Biol ; 1331: 145-165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453297

RESUMO

Alzheimer's disease (AD), one of the most common causes of dementia in elderly people, is characterized by progressive impairment in cognitive function, early degeneration of basal forebrain cholinergic neurons (BFCNs), abnormal metabolism of the amyloid precursor protein (APP), amyloid beta-peptide (Aß) depositions, and neurofibrillary tangles. According to the cholinergic hypothesis, dysfunction of acetylcholine-containing neurons in the basal forebrain contributes markedly to the cognitive decline observed in AD. In addition, the neurotrophic factor hypothesis posits that the loss nerve growth factor (NGF) signalling in AD may account for the vulnerability to atrophy of BFCNs and consequent impairment of cholinergic functions. Though acetylcholinesterase inhibitors provide only partial and symptomatic relief to AD patients, emerging data from in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) studies in mild cognitive impairment (MCI) and AD patients highlight the early involvement of BFCNs in MCI and the early phase of AD. These data support the cholinergic and neurotrophic hypotheses of AD and suggest new targets for AD therapy.Different mechanisms account for selective vulnerability of BFCNs to AD pathology, with regard to altered metabolism of APP and tau. In this review, we provide a general overview of the current knowledge of NGF and APP interplay, focusing on the role of APP in regulating NGF receptors trafficking/signalling and on the involvement of NGF in modulating phosphorylation of APP, which in turn controls APP intracellular trafficking and processing. Moreover, we highlight the consequences of APP interaction with p75NTR and TrkA receptor, which share the same binding site within the APP juxta-membrane domain. We underline the importance of insulin dysmetabolism in AD pathology, in the light of our recent data showing that overlapping intracellular signalling pathways stimulated by NGF or insulin can be compensatory. In particular, NGF-based signalling is able to ameliorates deficiencies in insulin signalling in the medial septum of 3×Tg-AD mice. Finally, we present an overview of NGF-regulated microRNAs (miRNAs). These small non-coding RNAs are involved in post-transcriptional regulation of gene expression , and we focus on a subset that are specifically deregulated in AD and thus potentially contribute to its pathology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Idoso , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Camundongos , Fator de Crescimento Neural , Neurônios
14.
Biomolecules ; 10(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024191

RESUMO

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1-14 sequence (hNGF1-14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1-14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1-14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1-14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1-14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


Assuntos
Neurônios Colinérgicos/metabolismo , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/química , Receptor trkA/agonistas , Receptor trkA/metabolismo , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Bioensaio , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Peptídeos/química , Fosforilação , Ratos , Transdução de Sinais , Tirosina/química
15.
Aging (Albany NY) ; 11(23): 11770-11792, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31812953

RESUMO

Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.


Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Fatores de Crescimento Neural/metabolismo , Humanos , Neoplasias/imunologia
16.
Cells ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939824

RESUMO

Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cobre/farmacologia , Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dimerização , Endocitose/efeitos dos fármacos , Feminino , Ionóforos/farmacologia , Fator de Crescimento Neural/química , Células PC12 , Fenótipo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Ratos , Ratos Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Termodinâmica
18.
Mol Neurobiol ; 56(1): 535-552, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29736736

RESUMO

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Insulina/farmacologia , Fator de Crescimento Neural/farmacologia , Núcleos Septais/metabolismo , Doença de Alzheimer/genética , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Núcleos Septais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632177

RESUMO

Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and ß-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the "routing" proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, ß-amyloid peptide (Aß) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Animais , Neurônios Colinérgicos , Hipocampo/metabolismo , Humanos , Neuropatologia , Sinapses/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...